Semi-parametric Graphical Estimation Techniques for Long-memory Data

نویسندگان

  • Murad S. Taqqu
  • Vadim Teverovsky
چکیده

This paper reviews several periodogram-based methods for estimating the long-memory parameter H in time series and suggests a way to robustify them. The high frequencies tend to bias the estimates. Using only low frequencies eliminates the bias but increases the variance. We hence suggest plotting the estimates of H as a function of a parameter which balances bias versus variance and, if the plot attens in a central region, to use the at part for estimating H. We apply this technique to the periodogram regression method, the Whittle approximation to maximum likelihood and to the local Whittle method. We investigate its eeectiveness on several simulated fractional ARIMA series and also apply it to estimate the long-memory parameter H in computer network traac.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Stationary Long Memory Estimation

Spectral analysis of strongly dependent time series data has a long history in applications in a variety of fields, such as, e.g., telecommunication, meteorology, hydrology or, more recently, financial and economical data analysis. There exists a wide literature on parametrically or semi-parametrically modelling such processes using a long-memory parameter d, including more recent work on wavel...

متن کامل

”Semi Parametric Estimation of Long Memory: the Holy Grail or a Poisoned Chalice?”

Considerable previous literature has addressed the problem of finding the most desirable estimator of the long memory parameter in a univariate time series. This paper considers three different estimation procedures: (i) the long memory parameter is obtained from a semi parametric Local Whittle estimator, which is used to filter the series before estimation of the short run parameters, (ii) a t...

متن کامل

Wavelet-Based Estimation Procedures for Seasonal Long-Memory Models

Motivation • Seasonal long memory is gaining attention as a time series model in econometrics and the physical sciences. { Arteche and Robinson (2000) proposed log-periodogram regression and Gaussian semi-parametric estimation for seasonal long-memory processes. • The discrete wavelet transform (DWT) is a useful alternative to the discrete Fourier transform for the analysis and synthesis of lon...

متن کامل

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996